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It is shown that in the absence of spontaneous symmetry breaking the Dirac cones in the system of inter-
acting electrons on honeycomb lattice are isotropic at low energies. The effect is due to the Z3 subgroup of the
D3 symmetry group of the dispersion relation of Dirac quasiparticles. Consequences of the violations of the Z3

or the sublattice symmetry are discussed.
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The crucial property of the single layer of graphite, i.e.,
graphene, is that it has well-defined, Dirac-type, massless
quasiparticles in its low-energy spectrum. It is commonly
assumed that the Dirac cone is isotropic, with the Fermi ve-
locity independent of direction. This is, for example, what
one straightforwardly finds in simple tight-binding model of
noninteracting electrons,1 which is used as an input in the
theories that include the Coulomb interaction. Since all the
components of the electron-electron interaction, including
the Coulomb’s unscreened �1 /r tail, are technically irrel-
evant perturbations at the noninteracting fixed point,2 it
seems natural then to assume that the Dirac cone stays iso-
tropic in presence of interactions as well.

And indeed, the above expectation seems to be fulfilled in
experiment.3 The above simple reasoning for the isotropy of
the Dirac cone, however, is faulty. The irrelevance of inter-
actions is only a long-distance property, and it is not obvious
why the lattice effects, which need to be inserted by hand
into the low-energy theory, and would certainly renormalize
the Fermi velocity, should not also break the cone’s isotropy.
The honeycomb lattice, after all, has only C6v symmetry.
Clearly, if an anisotropic cone would be assumed in the low-
energy theory, for example, the interactions, being irrelevant,
would not alter that hypothetical feature either.

The issue is further highlighted by a recent study4 in
which the effects of weak interactions in a Hubbard-type
model on honeycomb lattice are determined in a more rigor-
ous form as a convergent series. The authors conclude that
whereas the Fermi velocity does become renormalized by the
short-range interactions, it does so in an isotropic fashion.
This result comes out in a rather nontrivial analysis of the
terms in the perturbation series. The utter simplicity of the
conclusion, and its obvious relevance for the physics of
graphene, however, beg for an elementary explanation. Such
an explanation is offered here by showing that the single-
particle excitation spectrum at low energy has the exact D3
symmetry, which suffices for the Dirac cone to be isotropic
asymptotically. The anisotropy may be induced by the reduc-
tion in Hamiltonian’s symmetry. The argument is based only
on the existence of the well-defined quasiparticle excitations
around Dirac points, and on the absence of the spontaneous
symmetry breaking by the ground state.

Let as assume that there exists a Dirac point in the Bril-

louin zone at a wave vector K� near which quasiparticles are
well defined in the sense of Landau. C6v symmetry of the
interacting Hamiltonian on the honeycomb lattice implies

then that the quasiparticle spectrum e�k�� is such that

e�k� + R� � = e�k�� , �1�

and

e�U�k�� = e�k�� , �2�

where R� is any of the two reciprocal-lattice vectors of the
triangular Bravais lattice, and U� is a rotation by the integer
multiple of � /3. �We will subscribe here to the notation in
Ref. 5.� This in particular dictates that there must be six
Dirac points, related to each other by the above discrete ro-
tations.

Consider a point k�1 in the vicinity of the chosen Dirac

point at K� . There are two other symmetry-related points near
the same Dirac point,

k�2 = U2�/3k�1 + R� 1, �3�

k�3 = U4�/3k�1 + R� 2, �4�

so that obviously e�k�1�=e�k�2�=e�k�3�. These three points are
related to each other by the rotations by 2� /3 around the
Dirac point. The Dirac cone therefore inherits the Z3 sub-
group of the lattice symmetry. Furthermore, since for any
wave vector k� we also have the reflection symmetries,

e�kx,ky� = e�− kx,ky� = e�kx,− ky� , �5�

it follows that, in the reference frame in which the x axis is
chosen along one of the reciprocal vectors,5 one of these
applies also to the vicinity of the Dirac point. More precisely,
if we define the momenta relative to the Dirac point as qx
=kx−Kx and qy =ky −Ky, then the reflection symmetry to-
gether with Eq. �1� implies

e�qx + Kx,qy + Ky� = e�− qx + Kx,qy + Ky� . �6�

The full symmetry of the Dirac cone is therefore

D3 = Z2�reflection� � Z3�rotations� , �7�

i.e., the symmetry of the equilateral triangle.
It is convenient to define the complex wave vector mea-

sured from the Dirac point,

q = qx + iqy , �8�

PHYSICAL REVIEW B 79, 193405 �2009�

1098-0121/2009/79�19�/193405�2� ©2009 The American Physical Society193405-1

http://dx.doi.org/10.1103/PhysRevB.79.193405


q̄ = qx − iqy , �9�

and place the origin of the coordinate frame in the reciprocal

space at the Dirac point, so that e�q� +K� �→e�q��.
We will assume the particle-hole symmetry of the spec-

trum. In graphene, the particle-hole symmetry is weakly vio-
lated by the very small next-nearest-neighbor hopping. At
sufficiently low energy, however, strictly speaking the
particle-hole symmetry always emerges, after the chemical
potential has been tuned to the Dirac point. Since in this note
we are interested only in the asymptotic form of the energy-
momentum relation, possible lack of particle-hole symmetry
at higher energies does not affect our discussion in an essen-
tial way.

Particle-hole symmetry of the Dirac spectrum implies that
one should consider the square of the energy as a power
series

e2�q, q̄� = a1q + b1q̄ + a2q2 + b2qq̄ + c2q̄2 + a3q3 + b3q2q̄

+ c3qq̄2 + d3q̄3 + h . o . t . , �10�

where xi, x=a ,b ,c ,d are constant coefficients. The Z3 sym-
metry of the spectrum implies that

e�ein2�/3q,e−in2�/3q̄� = e�q, q̄� , �11�

for n=1,2, so that in the above expansion

a1 = b1 = a2 = c2 = b3 = c3 = 0. �12�

Together with the reflection part of D3, which demands that

e�q, q̄� = e�− q̄,− q� , �13�

this implies that

e2�q, q̄� = b2�qq̄� + a3�q3 − q̄3� + c4�qq̄�2 + O�q4q̄,qq̄4� ,

�14�

where we included the single allowed quartic term as well.
The reality of the expression requires the coefficients b2 and
c4 to be real, and a3 to be purely imaginary.

To the leading order the spectrum near the Dirac point is
therefore isotropic, and one can identify the coefficient b2 as
the �squared� Fermi velocity.

It is also interesting to consider the situation where the
Hamiltonian is deformed so that the spectrum near the Dirac
point remains only Z2 �reflection� symmetric. This, for ex-
ample, would arise if the nearest-neighbor hopping in one
direction is different from the other two in the tight-binding
model.6 The energy then has the form

e2�q, q̄� = a1�q − q̄� + a2�q2 + q̄2� + b2qq̄ + h . o . t . �15�

so that, besides the shift of the location of the Dirac point
�due to a finite coefficient a1�, the effect is the anisotropy of
the Dirac cone �due to a finite coefficient a2�.

Finally, breaking of the sublattice or the time-reversal
symmetry2 would only result in the addition of a finite term
to the final form of the Taylor expansion of the energy in Eq.
�14�, since the group D3 remains the symmetry of the energy
dispersion in the presence of the mass gap.

To conclude, whenever the Dirac quasiparticles appear in
the spectrum of the interacting Hamiltonian that respects the
symmetry of the honeycomb lattice, they inherit the D3 sub-
group of the lattice symmetry group. The Z3 subgroup of the
D3, when not broken, then forces the Fermi velocity to be
isotropic. The anisotropy appears only in the subleading term
in the dispersion relation.
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